首页> 外文OA文献 >Flow Fields: Dense Correspondence Fields for Highly Accurate Large Displacement Optical Flow Estimation
【2h】

Flow Fields: Dense Correspondence Fields for Highly Accurate Large Displacement Optical Flow Estimation

机译:流场:高精度大型密集对应场   位移光流估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Modern large displacement optical flow algorithms usually use aninitialization by either sparse descriptor matching techniques or denseapproximate nearest neighbor fields. While the latter have the advantage ofbeing dense, they have the major disadvantage of being very outlier prone asthey are not designed to find the optical flow, but the visually most similarcorrespondence. In this paper we present a dense correspondence field approachthat is much less outlier prone and thus much better suited for optical flowestimation than approximate nearest neighbor fields. Our approach isconceptually novel as it does not require explicit regularization, smoothing(like median filtering) or a new data term, but solely our novel purely databased search strategy that finds most inliers (even for small objects), whileit effectively avoids finding outliers. Moreover, we present novel enhancementsfor outlier filtering. We show that our approach is better suited for largedisplacement optical flow estimation than state-of-the-art descriptor matchingtechniques. We do so by initializing EpicFlow (so far the best method onMPI-Sintel) with our Flow Fields instead of their originally usedstate-of-the-art descriptor matching technique. We significantly outperform theoriginal EpicFlow on MPI-Sintel, KITTI and Middlebury.
机译:现代大位移光流算法通常使用稀疏描述符匹配技术或密集近似最近邻域进行初始化。尽管后者具有致密的优点,但是它们的主要缺点是非常容易发生异常偏斜,因为它们不是为了找到光流而设计的,而是在视觉上最相似的对应。在本文中,我们提出了一种密集的对应场方法,该方法比异常近邻场更不容易出现异常值,因此更适合于光学流估计。我们的方法在概念上是新颖的,因为它不需要显式的正则化,平滑(如中值滤波)或新的数据项,而仅是我们新颖的纯数据库搜索策略,它可以找到大多数离群值(即使对于小对象),同时可以有效地避免发现离群值。此外,我们提出了针对异常值过滤的新颖增强功能。我们表明,与最新的描述符匹配技术相比,我们的方法更适合于大位移光流估计。为此,我们使用流场而不是最初使用的最先进的描述符匹配技术来初始化EpicFlow(迄今为止,MPI-Sintel上最好的方法)。我们在MPI-Sintel,KITTI和Middlebury上的原始EpicFlow明显优于传统的EpicFlow。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号